Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

(4*S*,5*S*)-2-Benzyloxy-4-methyl-5-(4-tolylthiocarbonyl)-oxazoline

William Clegg* and Lynne Horsburgh

Department of Chemistry, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, England

Correspondence e-mail: w.clegg@ncl.ac.uk

Key indicators

Single-crystal X-ray study T = 160 KMean $\sigma(\text{C-C}) = 0.003 \text{ Å}$ R factor = 0.030 wR factor = 0.079Data-to-parameter ratio = 15.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The five-membered ring in the title compound, $C_{19}H_{19}NO_3S$, is almost planar. The *cis* configuration of the ring substituents and the absolute configuration determination confirm the proposed mechanism of the stereospecific synthesis.

Received 10 June 2002 Accepted 17 June 2002 Online 21 June 2002

Comment

The title compound, (I), was synthesized as part of a study of the stereocontrolled synthesis of $anti-\alpha$ -hydroxy- β -amino acid derivatives (Ambroise *et al.*, 2002). The crystal structure of (I) was determined in order to confirm the relative stereochemistry of the substituents on the heterocyclic ring; this was found to be *cis*.

The central five-membered ring is almost planar (Fig. 1), with a root-mean-square deviation of 0.026 Å for the component atoms. The geometry (Table 1) is very similar to that observed for the only other reported structure of a comparable oxazoline (Seki & Matsumoto, 1999), which also has the *cis* configuration.

There are no notable intermolecular interactions.

Experimental

The synthesis of the title compound is described by Ambroise *et al.* (2002).

Crystal data

C19H19NO3S $D_x = 1.266 \text{ Mg m}^{-3}$ $M_{\rm v} = 341.41$ Mo $K\alpha$ radiation Monoclinic, P2 Cell parameters from 6005 a = 11.9010 (9) Åreflections b = 5.7705 (4) Å $\theta=2.7\text{--}28.7^\circ$ $\mu = 0.20 \ \mathrm{mm}^{-1}$ c = 13.7964 (10) Å $\beta = 109.043 (2)^{\circ}$ T = 160 (2) K $V = 895.61 (11) \text{ Å}^3$ Rectangular block, colourless $0.52 \times 0.40 \times 0.34 \text{ mm}$

Data collection

Siemens SMART 1K CCD diffractometer 3203 reflections with $I > 2\sigma(I)$ ω rotation with narrow frames Absorption correction: multi-scan (XPREP in SHELXTL; $h = -15 \rightarrow 15$ Sheldrick, 1994) $K = -6 \rightarrow 7$ $K = -6 \rightarrow 7$ $K = -17 \rightarrow 18$ 6725 measured reflections

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

Refinement

 $\begin{array}{lll} \mbox{Refinement on } F^2 & w = 1/[\sigma^2(F_o^2) + (0.0493P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.030 & + 0.0826P] \\ wR(F^2) = 0.079 & \mbox{where } P = (F_o^2 + 2F_c^2)/3 \\ S = 1.03 & (\Delta/\sigma)_{\rm max} < 0.001 \\ 3382 \ {\rm reflections} & \Delta\rho_{\rm max} = 0.21 \ {\rm e \ \mathring{A}^{-3}} \\ 219 \ {\rm parameters} & \Delta\rho_{\rm min} = -0.19 \ {\rm e \ \mathring{A}^{-3}} \\ \mbox{H-atom parameters constrained} & Absolute \ {\rm structure: Flack} \ (1983), \\ 1056 \ {\rm Friedel \ pairs} \\ \mbox{Flack \ parameter} = -0.08 \ (6) \end{array}$

Table 1 Selected geometric parameters (\mathring{A}, \circ) .

O1-C1	1.361 (2)	C1-O3	1.3292 (17)
O1-C3	1.4424 (16)	N1-C2	1.4760 (19)
C1-N1	1.258 (2)	C2-C3	1.569 (2)
C1-O1-C3	104.94 (11)	C1-N1-C2	105.93 (14)
O1-C1-N1	120.79 (13)	N1-C2-C3	103.97 (11)
O1-C1-O3	109.94 (13)	O1-C3-C2	103.94 (11)
N1-C1-O3	129.27 (15)		,
C3-O1-C1-N1	5.39 (18)	C1-O1-C3-C2	-6.31 (14)
O1-C1-N1-C2	-1.42(18)	N1-C2-C3-O1	5.71 (14)
C1-N1-C2-C3	-2.87(15)		, ,

H atoms were placed geometrically and refined with a riding model (including free rotation about C—methyl bonds), and with $U_{\rm iso}$ constrained to be 1.2 (1.5 for methyl groups) times $U_{\rm eq}$ of the carrier atom.

Data collection: *SMART* (Siemens, 1995); cell refinement: local programs; data reduction: *SAINT* (Siemens, 1995); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1994); program(s) used to

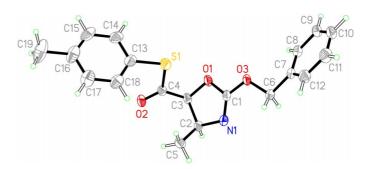


Figure 1

The molecular structure of (I), with atom labels and 50% probability ellipsoids for non-H atoms.

refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and local programs.

The authors thank the EPSRC for financial support and Professor Richard Jackson for supplying the sample.

References

Ambroise, L., Dumez, E., Szeki, A. & Jackson, R. F. W. (2002). Synthesis. In the press.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Seki, M. & Matsumoto, K. (1999). Synthesis, pp. 924-926.

Sheldrick, G. M. (1994). SHELXTL. Version 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.